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This paper describes an experimental study of a stratified fluid which is flowing over a 
smooth two-dimensional obstacle which induces no flow separation and in which 
effects of viscosity and diffusion are not important. The results are restricted to fluid 
of finite depth. Various properties of the flow field, in particular the criterion for the 
onset of gravitational instability in the lee-wave field, are measured and compared 
with the theoretical predictions of Long’s model. The agreement is found to be gen- 
erally poor, and the consequent inapplicability of Long’s model is explained by the 
failure of Long’s hypothesis of no upstream influence, which is demonstrably invalid 
when stationary lee waves are possible. The obstacle generates upstream motions with 
fluid velocities which appear to be of first order in the obstacle height. These motions 
have some of the character of shear fronts or columnar disturbance modes and have the 
same vertical struct,ure as the corresponding lee-wave modes generated downstream. 
They result in a reduced fluid velocity upstream below the level of the top of the 
obstacle, together with a jet of increased fluid velocity above t,his level which pours 
down the lee side of the obstacle. This phenomenon becomes more pronounced as the 
number of modes is increased. 

1. Introduction 
The nature of st,ratified flow over obstacles and the question of what influence (if 

any) the presence of an obstacle exerts far upstream have been controversial issues for 
many years (see, for example, Benjamin 1970; Turner 1973, chap. 3). Long’s (1955) 
theoretical model, which applies to two-dimensional incompressible inviscid flow, has 
provided a tantalizingly simple procedure for calculating the complete flow field 
without approximations. However, it  requires the assumptions (a )  that the flow is 
steady and ( b )  that the horizontal kinetic energy +p(z) U ( Z ) ~  (p is the fluid density and 
U the horizontal fluid velocity) is independent of the height z far upstream. For the 
application of the model to initially uniform flow (ie. pU2 independent of z )  which is 
modified by the introduction of an obstacle, assumption ( b )  contains implicitly the 
assumption of no (or a t  least negligible) influence of the obstacle on the fluid far 
upstream, commonly termed ‘Long’s hypothesis ’. The complete equations for the flow 
field may then be expressed in a form in which the nonlinear advection terms vanish 
identically, and the equations reduce to a classical Helmholtz equation for which 
met,hods of solution may be found. This raises another long-standing question, namely 
whether the flow field so obtained is ‘special ’ and lacks some properties which would be 
present with other, more general, upstream velocity profiles. 

Long’s model has been applied to two-dimensional flow over an obstacle in a channel 



148 P. G. Baines 

of finite depth by Long (1955), Yih (1960), Drazin & Moore (1967), Miles (1968a), Pao 
(i969), Davis (1969) and Pekelis (1972) and to flow of infinite depth by Miles (1968a, 
b) ,  Miles & Huppert (i969), Huppert & Miles (1969) and Pao (1 969).7 Long’s hypothesis 
has also been employed, consciously or unconsciously, in a number of numerical 
studies in the meteorological literature. The question of the uniqueness of solutions 
to the mathematical problem posed by Long’s model has been discussed for the finite- 
depth case by Grimshaw (1968), who showed that the problem was well posed for any 
finite obstacle provided it satisfied a simple convexity condition (effectively excluding 
mushrooms). 

Long’s model has its intrinsic limitations. We define h to be the obstacle height, D 
the channel depth, N the Brunt-Viiisiilii frequency and K = ND/nU.  Segur (1971) 
showed that if [K]  > [K( 1 - h/D)] ,  where [K]  denotes the largest integer 6 K ,  then as 
the length of the obstacle was increased (its shape was assumed to be approximately 
rectangular) the lee-wave amplitudes tended towards infinitely large magnitudes and 
the solution became physically unrealistic. Conversely, if the above expression was an 
equality no such behaviour occurred. These results were established within the con- 
fines of Long’s model and indicate limitations based on h/D and the obstacle length. For 
infinite depth, the work of Miles and Huppert cited above indicates that Long’s model 
becomes inapplicable owing to instability in the lee-wave field when R = Nh/U 
becomes greater than a number which depends on the obstacle shape, but is generally 
of order unity. Hence there are limitations to the applicability of Long’s model which 
are independent of the upstream assumption. 

The validity of Long’s hypothesis has been discussed at length by McIntyre (i972), 
who performed an expansion with the height of the mountain as small parameter and 
showed that to second (and probably all) orders no effects far upstream are obtained 
by this procedure, apart from some weak second-order columnar motions generated by 
nonlinear interactions in the lee-wave tails, in the finite-depth case. This work has now 
become the chief justification for the use of Long’s model, not only for two-dimensional 
flow but also for axisymmetric flow around obstacles in a rotating fluid, for which it has 
been used by Miles (1972) in the first of a series of papers, the latest being Miles (1975). 

There is also a class of theoretical studies of stratified flow in the limit of very slow 
motion which predicts, among other things, upstream blocking of the fluid below the 
top of the obstacle, extending to infinity. This will be discussed in more detail in a later 
paper (Baines 1977) and for present purposes it suffices to say that the proponents of 
Long’s model assume that the flow speed is sufficiently high for such effects to be 
negligible. Justification for Long’s hypothesis has also been sought from the work of 
Trustrum (1964), who showed that a dipole with its axis horizontal (frequently used to 
model an obstacle, by analogy with potential flow) on a horizontal boundary produced 
no effects far upstream. 

Corresponding experimental studies have been relatively few, there being only three 
or four which have a direct bearing on the validity or otherwise of Long’s model. The 
first of these was carried out by Long using smooth flat obstacles and described in his 
original paper (Long 1955), where the theoretical and observed flow fields were presen- 
ted for visual comparison and showed general similarity provided that Kand Rwere not 
too large. If these conditions were not satisfied, blocking was observed upstream below 
the top of the obstacle and multiple jets above it, extending an unknown distance 

t This list is probably far from complete. 
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upstream. Long assumed (incorrectly in view of the results of Grimshaw 1968) that the 
solution did not exist if the obstacle was higher than the lowest nodal line of B lee wave, 
and also that the solutions could be invalidated if overturning occurred in the lee 
waves, causing turbulence. He thus concluded that the model was B good approxima- 
tion to reality if these two latter conditions were not violated. A similar comparison of 
lee-wave observations with the model has been made by Droughton & Chen (1971), 
with similar conclusions. 

Davis (1969) also carried out a combined theoretical and experimental study, using 
taller obstacles (& and B of the channel depth) consisting of vertical barriers and 
triangles. He observed considerable turbulence downstream in the wake of the 
mountain, and also in rotor regions when the flow was subcritical with respect to about 
three or four lee-wave modes. He concluded that this was responsible for the observed 
discrepancy between the theoretical and experimental flows, and that consequently 
Long’s model was useful only when a small number of lee-wave modes were present. 
However, the obstacle shapes chosen and particularly the presence of sharp corners 
tended to induce flow separation and turbulence on the lee side which would not be 
present for other, smoother shapes, so that these results do not provide a good test of 
the usefulness of Long’s model in such cases. Some effects (not described) were observed 
upstream but were assumed to be insignificant. 

After the completion of most of the work described in this paper the author became 
aware of the work of Wei, Kao & Pao (1975), who studied upstream effects of flow over 
vertical barriers and circular obstacles. Various columnar disturbance modes - hori- 
zontal velocity profiles with sinusoidal vertical structure appropriate to the subcritical 
lee-wave modes -were observed a t  considerable distances upstream (up to three times 
the depth) with, in some cases, little change in amplitude. The presence of these was 
attributed to flow separation behind the obstacle causing an expanding region of 
turbulent mixed fluid as the obstacle moved along, resulting in a source-like obstacle 
producing the upstream flow in the manner described by Wong & Kao (1970) and 
Trustrum (1964). This explanation would seem unlikely since a turbulent wake 
does not really constitute source-like behaviour (because there is no change in 
the fluid volume, as the wake grows a t  the expense of the surrounding stratified 
fluid). 

In summary, it would appear that Long’s model provides a satisfactory description 
of the flow field in some cases, but that the region of its validity is ill defined and the 
manner in which it breaks down is not at all understood. The original aim of the work 
described in this paper was to test theoretical criteria for instability and rotor forma- 
tion obtained from Long’s model, using smooth obstacles which did not induce flow 
separation purely because of their shape. The establishment of such criteria is one of 
the main questions to which Long’s model has been applied (Miles 1968a, etc), and it is 
of practical significance for prediction of turbulence (clear air and otherwise) near 
mountains in the atmosphere and also in the oceans. 

The plan of the paper is as follows: in $ 2 the experimental apparatus and procedure 
are described; in 9 3 various flow properties obtained from Long’s model are compared 
with observations and considerable discrepancy is found, leading to a study of the flow 
observed upstream of the obstacle, which is described in $5. The stagnant or ‘rotor’ 
regions found in the large amplitude lee waves are described in 9 4 and the conclusions 
are given in $6.  
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For the analogous system of motion along the axis of a rotating fluid, experiments for 
the axially symmetric case described by Pritchard ( I  969) and Maxworthy (1970) show 
some features corresponding to those reported here. 

2. The experimental apparatus 
The experiments were carried out in a rectangular Perspex-sided tank of length 

3.66 m and width 0.23 m filled with salt-stratified water to a depth which was varied 
but was typically 0.3 m. The vertical density gradient was constant from top to bottom, 
and the total density difference was typically 0.4 %.i The fluid motion was generated 
by towing the obstacle (or ‘mountain’) along the bottom of the tank from right to 
left (as seen by the observer), starting from a position 0.56 m from the right-hand end. 

In order to be able to observe the flow relative to the mountain, a pair of tracks was 
fitted alongside the tank to support a moving carriage which travelled on rollers and 
on which was mounted a camera. The carriage could be connected to the electric 
motor used for towing the mountain by means of steel wire, so that both mountain and 
carriage could travel along the tank together at  any chosen speed. Flow visualization 
was by means of neutrally buoyant expanded-polystyrene beads, which had a range 
of densities covering that of the fluid. 

In  contrast with the experiments of Davis (1969), who used vertical barriers and 
triangular-shaped mountains, the present experiments used obstacles with the smooth 
‘Witch of Agnesi’ profile, given by 

2 = ha2/(x2+u2), (2.1) 

where x and z are horizontal and vertical co-ordinates respectiveIy. Two mountain 
shapes were used: for the smaller, the height h = 2.8 cm and the ‘ half-width ’ a = 4.0 cm ; 
for the larger, h = 6.26 cm and u = 4.95 cm. For these shapes no separation of the flow 
from the bottom boundary on the lee side of the obstacle was observed, except in one 
extreme case (not discussed here) where the channel depth was less than twice the 
mountain height. 

For nearly all of the experimental runs described in this paper, viscous boundary 
layers on the top, bottom and side walls had a small effect on the main features of the 
flow. Towing times were mostly less than 200 s, which gives a single boundary-layer 
thickness of (vt), 5 1.4 cm. For most runs, the Reynolds number (based on the 
obstacle height) was somewhat greater than 300. 

3. Long’s model: comparison of predictions with observations 

D the equations of motion could be reduced to 
Long (1955) showed that, under assumptions (a )  and ( b )  of $1, in a channel of depth 

V2S+ K2S = 0, K = ND/mU, (3.1) 

t The tank and the method of filling it are the same as those described in McEwan & Baines 
(1974), but with no contraction and with the paddles vertical. 
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FIGURE 1. Experimentally observed conditions for gravitational instability in the lee waves for 
the Witch of Agnesi profile with a/D = 0.095. 0 ,  unstable points; 0, stable points; --, 
simplest curve separating these points ; -, corresponding theoretical curve obtained from 
Long's model; - -, R = Nh/U = 0.85, which is the critical value of R for the case of infinite 
depth (Miles & Huppert 1969). 

where S(x, z )  is the vertical displacement of the streamline passing through the point 
(z, z )  from its elevation far upstream. The boundary conditions are then 

6+0 as x+--co, 

6 = h(z )  on z = h(x), where h(x)+O as z-f -GQ. 

6 = 0  on z = D ,  } (3.2) 

These constitute the equations of Long's model. Miles (19G8a) has shown that the 
solution to this system may be expressed in the form. 

where S' is the surface of the obstacle, n denotes the outwardly directed normal to the 
surface and G(x, z/<, y) is the appropriate Green's function. For values of K between the 
integers N and N + 1 the appropriate expression for G is 

2 N 
G = - - H ( x  - f )  x ail sin a,(x - c )  sin ny  sin nz 

n It= 1 

(3.4) 
1 "  

2 +- ai lexp ( - aTb Ix - el) sin ny sin nz,  
n n = N + 1  

where H is the Heaviside step function, all lengths have been made dimensionless 
using the length D/n and a, = I K2 - n2 14. 

These equations were solved to obtain various properties of the flow field using the 
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numerical scheme of Davis (1969)) whereby aSpn was evaluated at a set of grid points 
on the lower boundary from a finite-difference form of (3.3) applied to the lower 
boundary, these values then being used in (3.3) to obtain S a t  other points of the flow 
field. Fifty-one grid points were normally used but on occasions the accuracy was 
checked by using one hundred and even two hundred grid points. The procedure was 
checked for self-consistency, and with Miles’ solution for flow over a semicircular 
object. Satisfactory agreement was obtained, and the accuracy of any given point was 
of the order of 0.1 yo of the channel depth. 

Using this procedure, for fixed values of K the obstacle height h was varied and the 
flow field searched to obtain the smallest height for which a streamline somewhere 
in the flow became vertical, i.e. 

As h was increased further a8la.z became greater than unity in the region where this 
occurred, indicating static instability and ‘rotor ’ formation. The resulting curve for 
this criterion as a function of K for the Witch of Agnesi profile (2.1) with u/D = 0.095 
is given by the solid line in figure 1. Similar curves for objects of unknown shape were 
given in figure 2 of Long (1955)) who showed that this general shape with ‘humps’ 
between integer values of R persisted for very large K.  Long’s model solutions become 
singular when K has integer values. For 1 < K < 2, when only the first lee-wave mode 
is present, the point of incipient instability occurs a t  the upper boundary; for 

2 < h ’ < 3  

it occurs at  mid-depth, and as K increases it occurs a t  a progressively lower depth 
(depending on the lee-wave modes present) and, perhaps, closer to the obstacle. 

To test these results, the obstacle was towed along the tank at constant speed 
starting from rest in the manner described in 5 2,  and successive time-exposure photo- 
graphs were taken of the evolving velocity field from the moving carriage. As far as 
could be determined visually, the flow field close to the obstacle (including the poten- 
tially unstable region) appeared to reach a steady state within a towing distance of 
about 2 m for the cases reported here. When unstable regions occurred they were 
observed to result from streamlines becoming vertical (with positive gradient) and 
overturning, so that the theoretical criterion aS/ax = 1 is appropriate, and this in- 
stability occurred near the location predicted by Long’s model. However, the condi- 
tions which were observed to be stable (open circles in figure I)  and unstable (closed 
circles) hear little relation to the theoretical predictions of Long’s model. The experi- 
mental points representing stable and unstable conditions are separated by the heavy 
dashed line in figure 1.  It is possible that some points which were marginally stable 
would eventually become unstable if the towing distance were longer, causing the 
dashed curve to be lowered slightly, but this would hardly improve the agreement. 
Also the value of u/D differed from the theoretical one of 0-095 in the range 

asla2 = 1.  (3.5) 

0.13 < a/D < 0-30 

with varying D ,  but this is expected to affect the theoretical curve only slightly (Long 
1955). The dips in the theoretical curve were specifically looked for very closely, but 
no such behaviour was evident in the observations. Streak photographs of the final 
steady-state flow fields for some of the above experimental points are shown in 
figure 2 (plate I ) .  



Upstream inJluence and 

I I I 

1.0 1.0 3.0  

Long’s model in  stratiJied jiows 

\ 
\ 

I1 1 I c 
0 I .25 1.5 3.75 5.0 

153 

cm/s cm/s cmis 

FIGURE 3. Velocity profiles over the crest of the obstacle for various values of K for steady-state 
conditions compared with the corresponding curves obtained from Long’s model. h/D = 0.12 
for all cases. The points on the experimental curves denote the observations. (a) K = 1.21; 
(b)  K = 1.97; (c) K = 2.23; (d )  K = 2.58; (e) K = 3.83. 

As another check on Long’s model, the velocity profiles directly above the top of the 
obstacle were compared for a number of cases under the same circumstances as above. 
The comparison between these is shown in figure 3 and the agreement is very poor. A 
close inspection of the comparative figures of Davis (1969) and Long (1955) reveals 
similar differences in many cases: although the patterns of the streamlines are generally 
similar, the spacings between them often are not, 

Hence Long’s model gives a poor description of detailed aspects of the flow field 
even for quite small smooth obstacles, although the general picture of the lee-wave 
field is roughly correct: it would be strange, in fact, if the latter were not so, since the 
wavelengths of the lee waves must be correctly obtained. The model may be more 
accurate if the obstacle height is smaller, but in this case it may be no improvement on 
the simpler linear perturbation theory. 

4. Downstream observations 
Stagnant regions or ‘rotors’ occur in the lee waves when their amplitude is suffi- 

ciently high. Figure 4 (plate 2) shows four ‘steady-state’ flow patterns for a larger 
obstacle than in figure 2, in order of increasing R, showing the evolving character of the 
stagnant regions. Such regions contain fluid which is nearly stationary relative to the 
obstacle. The regions are closed with stagnation points upstream and downstream, 
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although there is a small leakage a t  the downstream end, apparently due to viscous 
effects, which is balanced by fluid added from the upstream side. Usually there is little 
evidence of rotation within the region unless it is attached to a boundary where a small 
amount of rotation is provided by tangential stress: hence the term ‘rotor’ is deemed 
inappropriate here, except for regions attached to the lower boundary, where the 
tangential stress may be large. 

The downstream lee-wave field itself was not examined in detail in this study. How- 
ever, some observations were made at a point downstream of the initial position of the 
obstacle in order to investigate possible effects of the downstream end of the tank, and 
to look for negatively propagating disturbances. For the latter, the kind envisaged in 
particular were the columnar modes of McIntyre (1972), generated by nonlinear 
interactions in the lee-wave tails. Observations and measurements from photographs 
taken by a stationary camera for two cases, K = 1.81 and K = 2.71, suggested the 
presence of very weak unsteady motions ( < 1 mm/s), which would be negligible in 
comparison with the upstream and lee-wave motions under study. No motions of the 
character predicted by McIntyre were observed, which was not surprising because the 
theoretical velocity magnitudes for these cases are less than 0-02 mm/s. The down- 
stream end of the tank was thus seen to have a negligible effect on the flow, until the 
arrival of motions reflected from the upstream end. 

5. Upstream observations 
It seemed likely that the failure of Long’s model, as described in 5 3, was due to the 

breakdown of Long’s hypothesis concerning upstream effects, and so a series of obser- 
vations upstream of the obstacle was made. For these the camera was situated at a 
fixed position relative to the tank, 1.7 m or 1.9 m upstream from the starting position of 
the obstacle. Streak photographs were taken a t  regular time intervals. Since the fluid 
velocities were expected to be somewhat smaller than those observed in the lee waves, 
comparatively longer time exposures (of several seconds) were used. Figures 5 and 7 
(plates 3-8) show several series of observations made using this procedure, in order of 
increasing K .  The upstream end of the tank has no effect on the figures and motions 
described unless stated otherwise. 

Series (a) in figure 5 (plate 3) shows a sequence of 4 s exposures taken at  10 s intervals 
(from start to start) with K = 0.91 (for details see figure caption), so that no lee-wave 
modes were present. The figures visible near the bottom of the tank denote distance 
from the left-hand end of the tank in centimetres, and motion was always begun with 
the obstacle centred on 310 cm and the digital clock (top right, showing minutes and 
seconds) showing zero seconds. Exposures were begun a t  multiples of 10 s after the 
start (the right-hand digit always reads ‘ 8 ’ owing to superposition of numerals). The 
obstacle appears blurred at the bottom in the third, fourth and fifth frames, and the 
fluid motion, which is in the forward direction (i.e. from right to left) in front of the 
obstacle at the bottom, has some similarity to potential flow. The modifications due to 
the density gradient (with presumably some incidental viscous effects) introduce an 
asymmetry into the streamline pattern, so that the region of rising motion in front of 
the obstacle is broadened and the region of descending motion behind it is shortened. 
There is also an indication that the descending motion is too strong, resulting in an 
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extended region of weak rising motion behind the obstacle, with a return flow of 
forward motion near the upper boundary. The flow pattern near the obstacle appeared 
to be steady. One interesting feature is that, after the obstacle was stopped near the 
left-hand end of the tank, the fluid motion continued, was reflected from the end wall 
and travelled back down the tank with the speed of an internal gravity wave appro- 
priate to its length ( -  0.7 NDln).  

Series (b)  in figure 5 (plate 4) is identical with series (a) except that the obstacle speed 
has been decreased so that K = 1-20. The flow is now subcritical with respect to the 
first internal-wave mode and the flow field is much more asymmetrical than before. 
The front of the upstream motion now has the character of a shear front (McEwan & 
Baines 1974), and is propagating ahead of the obstacle a t  the long-wave speed NDln. 
The fluid which is consequently lifted up ahead of the obstacle descends over and 
behind it into the first lee-wave mode, which is evident in the final frame. 

I n  series ( c )  in figure 5 (plate 5) K has been increased to 2.0 and the large obstacle 
has been used, but still with 4 s exposures. The motion is now more complicated, with 
oscillations in the amplitude of mode 1 upstream; mode 2, on the verge of propagating, 
is prominent close to the obstacle in the final frame. Series (d )  (plate 6) shows the motion 
with U decreased so that K = 2.52, other conditions remaining the same as in series ( c ) ;  
mode 2 has now propagated some distance ahead of the obstacle, the velocity at the 
lower boundary again being in the forward direction. Series ( e )  (plate 7) shows a differ- 
ent set of conditions with K = 5.9, again with 4 s exposures. The theoretical positions 
of the upstream fronts n = 1-5 (based on the long-wave speeds NDlnn) are indicated 
by the arrows at  the bottom, and these are seen to be consistent with the observed 
flow, although the picture is complicated by the reflexion of the first mode from the 
upstream end of the tank, which affects frames 5-8. The most prominent feature of the 
flow as K is increased is the partial blocking below the top of the obstacle, which is 
added to with each successive mode, together with a strong reversed flow upstream 
just above the level of the top of the obstacle (or as close to it as the modal structure 
mill permit). On passing over the obstacle this ‘jet ’ pours down the lee side. Other jet- 
like motion above this major jet is also related to the lee-wave structure (see figures 2 
and 4). 

The maximum horizontal velocities (relative to the tank) in upstream modes I and 2 
are shown in figures 6(a)  and ( b )  respectively. These are the velocities of the initial 
maxima, and subsequent velocities in the modes (i.e. before the obstacle arrives) may 
be variable and smaller. Nevertheless, these figures indicate that the upstream effects 
are of first order in the obstacle height h. It is interesting to compare these observations 
with results from the theory of Wong & Kao (1970) for a semi-infinite obstacle of the 
same height, modelled by a source. The latter are shown by the dashed curves in 
figures 8 (a) and ( b )  and are suggestive, but are not intended as a fit to the data. 

The phenomena described above are essentially inviscid and hydraulic in character. 
It is possible to argue that all the upstream effects for (say) 1 < K < 3 are transient 
and that the tank is too short to resolve this; however, this seems unlikely since it would 
be inconsistent with the observations for larger K and is also contradicted by the 
results of Wei et al. (1975) in a much longer tank. Hence the above observations indi- 
cate that the reason for the inapplicability of Long’s model is the invalidity of the ‘no 
upstream influence’ hypothesis when K > 1.  The manner in which this assumption 
manifests itself in Long’s model may be seen from the following argument. If one 
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FIGURE 6 .  Maximum fluid velocities (measured near the top and bottom for the first mode and 
near the mid-depth for the second mode) in the initial maximum of upstream motion, scaled with 
Uh/D, as a function of K for (a) mode 1 and ( b )  mode 2. The solid curves are from the theory of 
Wong & Kao (1970) for a semi-infinite obstacle modelled by a source, and are presented for 
comparison only. 
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examines the behaviour of the Green’s function G for Long’s model [equation (3.4)] for 
K near unity (for example), one notices that, for K < 1, G contains a term 

n-layl exp ( - a1 1% - CI ) sin q sin z, 

where a, = IK2 - 114, which is exponentially decaying in x both upstream and down- 
stream with exponent al. As K+ 1 - , a1 + 0, so that the horizontal exponential decay 
is very small. As K becomes greater than unity, the corresponding term in Long’s 
model becomes oscillatory in x - on the downstream side, with wavenumber al, but it 
is identically zero on the upstream side, as a consequence of Long’s hypothesis. How- 
ever, it is evident from figures 5 (a )  and ( b )  that this is not the case in practice a t  all, the 
decaying motion upstream converting to a wavelike motion which (ideally) propagates 
to infinity. A similar phenomenon occurs for the higher modes (n = 2 , 3 ,  . . .) when K is 
increased beyond 2,3 ,  . . . . Hence the ‘no upstream influence ’ assumption is seen to be 
an arbitrary one of mathematical convenience, and it is not surprising that the magni- 
tude of the error obtained is sufficient to account for the discrepancies reported in $ 3. 

The situation when K becomes large is shown in figure 7 (a )  (plate 8), where K = 11.3, 
with a 4 s exposure. In  this case some of the eleven upstream modes will have propa- 
gated up and down the length of the tank several times, so that end effects are impor- 
tant. The fluid below the level of the top of the obstacle is almost completely blocked, 
rising in a region near the end of the tank to the level of the upstream jet, in which it 
pours over the obstacle and down the lee side. Above this level the velocities are smaller 
and more variable. The motion on the downstream side, apart from the lee waves, had 
the appearance of being the mirror image of that on the upstream side, with motion 
away from the obstacle at  the lowest level leading to rising motion downstream and 
return flow a t  the level of the upstream jet. This general behaviour persisted as U was 
decreased further so that K increased to approximately 40. In  the limit of very slow 
flow, viscous and diffusive effects will become important (e.g. Barnard & Pritchard 
1975) but these are not under discussion here. If the depth is decreased so that 

h < D 5 2h, 

the motion is dominated by the first mode, as shown in figure 7 ( b )  (plate 8), where 
K = 4.9. The character of the flow is in many ways similar to that in figure 7 (a),  the 
downstream motion appearing to be the ‘mirror image’ of the upstream motion, with 
the lee waves superimposed. 

6. Conclusions 
It has been shown that Long’s model provides a poor description of detailed aspects 

of the flow field in fluid of finite depth in the areas in which it is expected to be most 
useful, viz. criteria for the onset of instability in the lee waves and associated velocity 
profiles over the top of the obstacle. The reason for this is apparently the breakdown of 
Long’s hypothesis, since the motion of the obstacle generates a series of shear fronts (or 
columnar disturbance modes) upstream corresponding to the lee waves downstream, 
with magnitudes which are proportional to the obstacle height. This upstream motion 
has a complex structure which is described qualitatively in $5; the most important 
feature is that, as U decreases, the fluid below the top of the obstacle becomes partially 
blocked. This results in rising motion (associated with the shear fronts), and the 
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elevated fluid forms a horizontal jet which then pours over and down the lee side of the 
obstacle. 

The empirical curve for the onset of gravitational instability in the lee waves is given 
in figure 1, and may be roughly approximated by 

H = nh/D = 0.28 + 0*37/K, 

or R = Nh/U = 0.28 K+0.37,  1 < K < 4, (6.1) 

for the Witch of Agnesi profile with u/D N 0.2, where the uncertainty in both figures is 
approximately 2 0.05. 

The question than arises as to what Long’s model actually means. It is still expected 
to give the correct solution (i.e. the flow field obtained at large times after starting the 
obstacle from rest) when K < 1.  For K > 1 (but not an integer) it will give the flow 
field when the upstream wave motion generated for an initially non-uniform unknown 
p ( z )  U(z)2  profile exactly cancels out the initial variations in p(z) U ( Z ) ~  far upstream. 

It should be noted that the conclusions given here apply specifically to fluid of finite 
depth. The situation for infinite depth, and the reasons why the analysis of McIntyre 
(1972) did not predict the observed upstream effects, will be discussed in a future paper 
(Baines 1977). 

The author is grateful to Dr Angus McEwan, who participated in the early stages of 
the experimental side of this investigation, to Ross Hall and George Scott for assistance 
with the experiments, and to the National Environmental Research Council of Great 
Britain for a Fellowship at the Department of Applied Mathematics and Theoretical 
Physics, Cambridge, where this work was written up. 
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(a) 

FIGURE 5 .  Series of st,reak photograplis taken by a stat'ioriary carncra lipstream of the obstacle. 
The time exposures are all of 4 s duration, beginning 10 s apart unless otherwisc stated. (a )  
H = 0.36, K = 0.91, C7 = 2.64 cm/s; ( b )  H = 0.36, K = 1.2, Cr = 2.01 cm/s; (c) H = 1.02, 
K = 2.0, U = 3.09 crn/s; ( d )  H = 1.03, K = 2.53, U = 2.27 cm/s; ( e )  H = 0.64, K = 5.9, 
U = 1.53 cmls. (In ( c )  and ( d )  the upstream velocity profiles are not quite sinusoidal, because the 
density gradient near thc bottom has been weakcnod by mixing due t o  previous runs.) In ( e )  the 
arrows denote t,heoretical positions of the fronts of the corresponding modes. 
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FIGURE 5 ( b ) .  For legend see plate 3. 

Plate 4 

BAINES 



Journal of Pluid iMechanics, VoZ. 82, part I 

FIGURE 5 ( c ) .  For legend see plate 3. 
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FIGURE 5 ( d ) .  Fcr legend see plate 3. 
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FIGURE 5 ( e ) .  For legend see plate 3. 
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FIGURE 7 .  As for figure 5, but for (a)  large K arid ( 6 )  shallow depth. (a) H = 0.79, h- = 11.3, 
U = 0.66 cm/s; (6) H = 1.67, K = 4.94, 71 = 0.67 cm/s, with 8 s exposures beginning 20, 80, 
110, 130 and 150 s after the start. 
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